

Verify that y= Cosx - 3 Sin X Satisfies y''' + y'' + y' + y = 0.y = Cosx - 3 STAX y' = -sin x - 3 cos xy'' = -cos x + 3 sin xy"= Smx + 3 Cosx $\beta_{m} + \beta_{n} + \beta_{n} + \beta_{n} = 0$

$$\begin{aligned} \begin{array}{c} \begin{array}{c} \displaystyle \operatorname{Sind} & \frac{d^{2} y}{d x^{2}} & \operatorname{iS} & \operatorname{Sin} y + \operatorname{Cos} x = 1 \\ & \frac{d}{d x} \left[\operatorname{Sin} y \right] + \frac{d}{d x} \left[\operatorname{Os} x \right] = \frac{d}{d x} \left[1 \right] \\ & \operatorname{Cos} y & \frac{d y}{d x} - \operatorname{Sin} x = 0 \\ \\ \displaystyle \frac{d^{2} y}{d x^{2}} = \frac{d}{d x} \left[\frac{d y}{d x} \right] & \frac{d y}{d x} & \frac{d y}{d x} = \frac{\operatorname{Sin} x}{\operatorname{Os} y} \\ & \frac{d y}{d x} = \frac{\operatorname{Sin} x}{\operatorname{Os} y} \\ = \frac{d}{d x} \left[\frac{\operatorname{Sin} x}{\operatorname{Cos} y} \right] = \frac{\operatorname{Cos} x \cdot \operatorname{Cos} y - \operatorname{Sin} x \cdot (-\operatorname{Sin} y) \cdot \frac{d y}{d x}}{\left[\operatorname{Cos} y \right]^{2}} \\ & = \frac{\operatorname{Cos} x \cdot \operatorname{Cos} y + \operatorname{Sin} x \operatorname{Sin} y \cdot \frac{\operatorname{Sin} x}{\operatorname{Cos} y} \\ & = \frac{\operatorname{Cos} x \cdot \operatorname{Cos} y + \operatorname{Sin} x \operatorname{Sin} y \cdot \frac{\operatorname{Sin} x}{\operatorname{Cos} y}}{\operatorname{Cos}^{2} y} \\ & = \frac{\operatorname{Cos} x \cdot \operatorname{Cos} y + \operatorname{Sin} x \operatorname{Sin} y}{\operatorname{Cos}^{3} y} \end{aligned}$$

Sind equation of the tan. line to the curve
given by
$$\chi y^2 = Sin(x + 2y)$$
 at $(0,0)$.
 $Tm = \frac{dy}{dx}(0,0)$
 $(0,0)f$
 $\frac{d}{dx}[\chi y^2] = \frac{d}{dx}[Sin(x+2y)]$
 $y - y_1 = m(x - x_1)$
 $1 \cdot y^2 + \chi \cdot 2y \cdot \frac{dy}{dx} = Cos(x + 2y) \cdot [1 + 2\frac{dy}{dx}]$
 $y - 0 = \frac{1}{2}(x - 0)$
evaluate at $(0,0) - p \cdot \frac{dy}{dx} = M$
 $y^2 + 0 \cdot 2(0) \cdot M = Cos(0 \cdot [1 + 2M])$
 $y = \frac{1}{2}x$
 $0 = 1 \cdot (1 + 2M)$
 $M = -\frac{1}{2}$

Sind equation of the tax. line at the Point where the curve given by $(\chi + y)^3 - 5\chi + y = 1$ intersects the ($\chi + y)^3 - 5\chi + y = 1$ $\chi + y = 1.$ $\chi + y = 1.$ $\chi + y = 1.$ line X+y=1. × (20,90) (1,5%) x+y=1 Intersection Point $\begin{cases}
 (\frac{1}{6}, \frac{3}{6}) \\
 \int (x+y)^{3} - 5x + y = 1 \\
 (x+y)^{3} - 5x + y = 1
\end{cases}$ $\begin{cases}
 1 - 5x + y = 1 \\
 (x+y) = 1
\end{cases}$ $\begin{cases}
 1 - 5x + y = 1 \\
 (x+y) = 1
\end{cases}$ -6x = -1 $(x+y)^3 - 5x + y = 1$ $\chi = \frac{1}{6}$ $3(x+y)^{2} \cdot (x+\frac{dy}{dx}) - 5 + \frac{dy}{dx} = 0$ $3(x+y)^{2} \cdot (x+\frac{dy}{dx}) - 5 + \frac{dy}{dx} = 0$ 03-2 $3 + 3 \frac{dy}{dx} + \frac{dy}{dx} = 5$ $4 \frac{dy}{dx} = 2 - 1$ $\beta - \beta' = w(x - x')$ 12 M > $y = \frac{5}{6} = \frac{1}{2} (\chi - \frac{1}{6})$ [y=

Show that
$$2x^{2} + 3y^{2} = 5$$
 and $y^{2} = x^{3}$
one orthogonal curves at $(1, 1)$.
 $2x^{2} + 3y^{2} = 5$
 $4x + 6y \frac{dy}{dx} = 0$
 $\frac{dy}{dx} = \frac{-2x}{30}$
 $\frac{dy}{dx} = \frac{-2x}{30}$
 $\frac{dy}{dx} = \frac{-2}{3}$
 $\frac{dy}{dx} = \frac{-2}{3}$
 $\frac{dy}{dx} = 3x^{2}$
 $-\frac{2}{3} \cdot \frac{3}{2} = -1$
 $\frac{dy}{dx} = \frac{3x^{2}}{2y}$
Product of slopes is -1 . $\frac{dy}{dx} |_{(1,1)} = \frac{3}{2}$
tan. lines are perpendicular.
Curves are orthogonal at $(1,1)$.

Use linear approximation to estimate $\sqrt[3]{-8.25}$. Use linear approximation to estimate $\sqrt[3]{-8,25}$. Use Cal. to f(x)=f(a)+f(a)(x-a)Sind $\sqrt[3]{-8,25} \approx [-2.021]$ where a is rear $f(x)=\sqrt[3]{x}$ a=-8 $f(a)=\sqrt[3]{-8}=-2$ $f(x)=\frac{1}{x}$ $f(x)=\frac{1}{3}\sqrt[3]{x}=\frac{1}{3\sqrt[3]{x^2}}=\frac{1}{3\sqrt[3]{x$

Class QZ 7
Sind equation of the tan. line to the
Curve given by
$$\chi y = 8$$
 at $(2,4)$.
 $\chi y = 8$ $(2)(4) = 8\sqrt{2}$
 $y = \frac{8}{\chi}$ $\frac{49}{3\chi} = -\frac{8}{\chi^2}$ $m = \frac{49}{3\chi}$ $(2,4) = \frac{-8}{2^2}$
 $y = -\frac{8}{\chi}$ $(2,4) = \frac{-8}{\chi^2}$ $(2,4) = \frac{-8}{2^2}$
 $y = -\frac{8}{\chi}$ $(2,4) = -\frac{8}{\chi^2}$
 $y = -\frac{8}{\chi^2}$ $(2,4) = -\frac{8}{\chi^2}$